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Normal and hot electro-phonon resonance effect in a 
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Received U) July 1992 in find form 6 January 1993 

Abstract me elenro-phonon mnance &e3 is a mnsequence of a resonant intenCBon 
two e l d c  subbands mediated by an optical phonon. It mm in a quasi-two- 

d i m m i d  electron srjm esch time the energ difference benveen hvo electric subbands 
equals the energy of a w phonon. We stDdy ule inffuence of this effect on the e l m o n  mobility 
by using the momentum balance equation. The Bmperanue and electron density dependem 
of the resonances are studied in the linear and non-linear response regimes. 

1. Introduction 

In a polar semiconductor at relatively high temperatures (T z 50K). the dominant factor 
limiting the mobility is the electron longitudinal optical (LO) phonon scattering process 111. 
For electron motion in a quasi-two-dimensional system the effective electron-mphonon 
interaction is enhanced [2], which consequently leads to a lowering of the mobility. The 
quantum confinement in the z direction implies mat the electron momentum in the z direction 
has no longer to be conserved during a scattering event. When several electric subbands are 
occupied in aquasi-two-dimensional electron gas (QZDEG), resonant scattering between these 
levels will occur each time the energy difference of two electric subbands equals the energy 
of a LO phonon f iw~o) .  These resonances are called electro-phonon resonances [3-9]. At 
resonance an enhancement of the scattering rate [SI will occur and the conductivity [SI and 
the mobility 191 will be suppressed. 

With the development and application of the HEMT (high electron mobility transistor) 
sUucture [lo]. the study of this electro-phonon resonant effect is of importance in 
understanding transport phenomena in semiconductors. For electron motion in a hvo- 
dimensional semiconductor system, the investigation of multi-subband transport ef€ects 
at low temperam has received some attention [4,9.11,12]. In the present paper we 
are interested in effects that are the consequences of (i) the occupation of several electric 
subbands. and (ii) the electron-mphonon scattering process at a relatively high temperature. 

The elecko-phonon resonance effect is the electrical equivalent of the magnetic magneto- 
phonon resonance effect, which was predicted by Gurevich and Firsov [I31 (for a review 
see, for example, [31). In the presence of a strong magnetic field, the magneto-phonon 
resonance effect occurs under the condition Nho,  = h a 0  where w, is the cyclotron 
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frequency and N = In - n’l is the difference between the Landau-level indices n and 
n’. This magneto-phonon resonance has been observed experimentally 114,151 and studied 
theoretically [16] for a two-dimensional system. Much less research has been devoted to 
the electrwphonon resonance effect. Komiyama and co-workers [5] have shown that (i) 
the subband splitting in a MIS structure (i.e. a n-inversion layer on p-InSb) can be tuned 
electrically by varying the electron density, and (ii) the el&-phonon resonance effect can 
he observed when a strong quantizing magnetic field is applied perpendicular to the interface, 
which provides a ‘zero-dimensional’ energy level sbucture. A Monte Carlo simulation for 
high-field transport in a quantum wire was repoxted by Briggs and kburton [6]. They found 
that the resonant inter-subband Lo phonon scattering occurs when the subband spacing 
is equal to the Lo phonon frequency. Recently, Kastalsky and co-workers [7l presented 
experimental evidence of the electro-phonon resonance effect in a AIG~AS/A~,G~~-~AS 
triangular quantum well (‘law). We studied the linear electro-phonon resonance effects in 
[8] by calculating the electron-Kbphonon scattering rate and the conductivity as a function 
of the energy difference of the electric subbands with different confinement potentials: (i) a 
square well, (ii) a triangular well (to model the heterosbucture), and (iii) a parabolic well. 
A relaxation time approximation method was introduced to calculate the conductivity. 

In the present paper we employ the momentum balance equation proposed by Lei and 
Ting 117,181 to study the electro-phonon resonance effects. One of the advantages of this 
approach is that dynamic elecwn4echun screening can be included when evaluating the 
electron transport characteristics. In section 2 the momentum balance equation for the 
mobility is derived by including electron scattered by LO phonons and elecwn-electron 
screening. The numerical results for the electro-phonon resonances in the mobility are 
presented in section 3 for linear and non-linear transport. Our conclusions a~ summarized 
in section 4. 

2. The momentum balance equation 

It has been demonstrated 1191 that the momentum balance equation proposed by Lei and 
Ting 117,181 provides a useful tool to study the transport properties of electrons in two- 
dimensional systems. This momentum balance equation, which is based on !he motion of 
the cenrre of mass of the electron system withim the 2D plane, is physically equivalent to the 
momentum balance equation as derived from the Boltzmann equation which we applied to 
study warm-electron transport [20] and the electro-phonon resonances [9]. In most of the 
previous papers 1171 on electron transport in a quasi-two dimensional system, one assumes 
that only the lowest electron subband is occupied. To observe the electro-phonon resonances 
we extend this balance equation to the situation of occupation of multi-subbands. 

Recently [21] the applicability of the momentum balance equation, called the force- 
balance equation, has been questioned. It is known that in the linear response regime such 
an approach leads to a resistivity p = (I /r)m/n,e2,  when the correct result is given by 
p = m/(t)n.e2. For a degenerate electron distribution one has (1/r) = l / ( r )  at zero 
temperature and there is no discrepancy. However for a non-degenerate distribution [22] 
(1/r) and 1/(r) are different, where the difference may depend on temperature [23]. In 
spite of this criticism we will use the momentum balance equation because (i) we are dealing 
with a degenerate electron gas, although at non-zero temperature, (ii) in general it gives the 
correcl qualitative behaviour, and (iii) it is relatively easy to obtain results in the non-linear 
regime. 
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The Hamiltonian describing the general electron-phonon interaction in a many-electron 
quasi-two-dimensional system is given by 

Hsp = Mn,n(q. qz, A)e"'R(bQi -b blqA) ~ C ~ t l k + g , , C n b -  (1) 
n'.n, k.m 

w Z . A  

Following Lei and Ting [I71 the momentum balance equation for the electron-phonon 
interaction is obtained by 

(W n,eE + F(v) = 0 

with the force term 

~ ( v )  = 2  I M ~ , ~ ( q . q , , ~ ) ) 1 2 q n o ( n ' , n , q , 0 ~ ~  + n e w )  
n'.n 

q.q*J. 

where 01 is the electron velocity of the centre-of-mass motion, T (&) the lattice (electron) 
temperature, n the index of the electric subband, Q = (9. qz), q = (qx, qy). R = (x, y ,  z), 
bGA and bQi are the phonon creation and annihilation operators, respectively, with 
wavevector Q and frequency OQA in branch A, cLb and c . b  are the electron creation 
and annihilation operators, respectively, n(n) = I/[exp(n) - I] is the Bose function, 
llo(nf, n ,  q. t )  is the imaginary part of the electron density4ensity correlation function, 
and M;,"(q, qz, A) = M,,.(q, qr, A)G.,n(qz) the electron-phonon interaction matrix with 
the form matrix 

G,,A~J = / d~ $~(z)~n(z)exp(-iqzz) 

which is determined by the electron wavefunction in the z direction. 

2.1. Electron-Lo-phonon coupling 

In case of electrons coupled to Lo phonons, (1) reduces to the FMhlich Hamiltonian [24] 

H~ = Q(VqaqeipR + vQa&e-'*R) C C~,&&ko (3) 
k5 

where VQ = i(4n(~/V)'~~(fi/2m*qa)'/~hqa/(q~ + q7)'/2. (Y is the electron-mphonon 
coupling constant ((Y = 0.068 for GaAs), and -0 the U) phonon fresuency ( h q a  = 
36.6meV for GaAs). The momentum balance equation (2) with an electric field applied 
along the x direction is 

n,eE + F(u,) = 0 (4a) 

~(v,) = 2  I~o(q,g,)12q~~o(n',n,q,qa+g,u,) 
n'.n. 
W Z  
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with 

where. ‘v = u,e, is the average electron velocity, and n o ( n r , n , q , o )  is the Fourier 
transformation of the electron density4ensity correlation function which will be calculated 
in the following subsection. 

In the limit of small electric fields, the electron response is described by the mobility 
fi. which is given by 

x n -  [ (::) 
2.2. The electron densiw-density correlation function 

The electron densityhsity correlation function plays a crucial role in the actual evaluation 
of electron transport: 

n(n‘,n,  q , 4  = nl(n’ ,n ,  q . 4  + i nz(n’,n, q . 4  63) 

with n ~ ( n ‘ , n ,  q. o) the real part, and n 2 ( n : n , q , o )  the imaginary part, and thus 

nO(n’, n ,  q ,  0) = n d n ’ ,  n,  q. 0). (6b) 

For the situation where electron-electron screening is included within the random phase 
approximation (RF’A) [25], we obtained for the imaginary part of the electron density-density 
correlation function 

where n ( n ’ , n , q , o )  is the electron density-density correlation function in the absence of 
electrori4ectron screening, and the electron-electmn screening is included through the 
dielectric function 

%(q, 0) = + y  - v#y(q)n(Y, Ir.d (7b) 

where we used the notation p, y = (n’, n) .  and 

VBV(Q) = hh” ” (q )  = 2rrez - 1 dzl 1 dzz fs(zl)fy(z2)e-q~‘l-z~’ (74 

is the Fourier-transformed Coulomb potential for electron scattering between subband n and 
n‘ screened by the scattering between m and m’, with f&) = f,.,(z) = @,+)@&) and K 
the static dielecnic constant of the material (U = 12.9 for GaAs). 

K 4  
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In the appendix we present a calculation of the imaginary part of the electron density- 
density correlation function when several electric subbands are included and in the presence 
of electron-electron screening. 

In the absence of electron-electron screening the electron density-density correlation 
function takes the form 

which gives 

where P stands for the principal value, and 

nz(n'. n ,  Q. U )  = - 2 ~  C [ f ( E n w q )  - f(Emk)l8(hu 4- &k+q - Erik) (W 
k 

where Erik = fi2k2/2m*+En is the electron energy with E, the energy ofthe electric subband 
n, and f ( x )  = I/{exp[(x -p*)/kgTe]+ I ]  is the Fermi-Dirac function with p* the chemical 
potential. After some simplifications we find 

and 

with 

2.3. The momentum balance equation for the mobility 

With the above expressions for the electron density-density correlation function we can 
calculate the mobility: 

= hzq2/2m* and E.," = E, + ( G ~  + h o  + E., - E . ) ' / ~ G ~ .  

with o = oto + qu,cosO, LO = ( h / 2 m * ~ ) * / 2  the unit of length (LO = 39.5 A fa GaAs), 
and 
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The chemical potential pa is determined by electron number conservation: 

with &(E) the density of states for electrons in subband n. Introducing the density of 
states (ms) for a two-dimensional electron system 

equation (1 la) reduces to 

In the case when a weak electric field is applied, the electron velocity is very small, 
which means Iqv,cdI << 1 and T, = T, and we obtain the ohmic mobility 

with NO = I/[eXp(hoLo/k~T) - I ]  the LO phonon occupation number. 

2.4. The case of a square well 

To demonstrate the electro-phonon resonances, and for sake of simplicity, we consider the 
case of a quasi-two-dimensional electron system with a square-well (QW) confinement of 
variable width. This has the advantages that (i) an arbitrary number of electric subbands 
can be included in the calculation, (ii) the position of the energy level of the subbands is 
tuned by changing the width of the quantum well, (iii) the electron density dependence of 
the electro-phonon resonance effect can be studied more directly, because the main effect 
of changing the electron density is to alter the chemical potential. and (iv) as will be shown 
in this subsection, the quantum-well confinement potential leads to a rather simple form for 
the form matrix and the electro~lectron screening. 

For the infinite-height square-well case, the eigenvalues E,, and envelope wavefunctions 
h ( z )  are known analytically: 

h ( z )  = m s i n ( n s z / L )  ( 13a) 

hZ n Z s Z  
E" -- 

2m* L2 

where L is the width of the square well. In the above expressions we need 
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and 

and 

with a, = z(n' + n ) / 2  a2 = r(n' - n)/2, ag = z(m' + m)/2, ry = r(m' - m ) / 2  and 
c = qL/2. Notice that (14b) implies that, for the quantum well case, electron-elec@on 
screening occurs only when the condition m' + m + n' + n = 2N (where N is an integer) 
is satisfied. This greatly simplifies our calculation of the imaginary part of the electron 
density4ensity correlation function when we include electron-electron screening. 

3. Numer id  results 

We perform the calculation for material parameters corresponding to GaAs: (i) the electron 
LO phonon coupling constant (Y = 0.068, (ii) the effective mass ratio m*/me = 0.0665, (iii) 
the LO phonon energy h- = 36.6 meV, and (iv) the static dielectric constant K = 12.9. 
The LO phonon units are: the unit of length Lo = [ f i / ( 2 " ~ ~ ) ] ' / ~  (LO = 39.5 8, for GAS), 
of velocity vm = (2hq.o/m')1/z (m = 4.40 x 10'cms-I for GaAs), of temperature 
T i  = h q . O / k B  (Tm = 425 K for GAS),  and of electric field Eo = w ( 2 " 8 w ) l ' 2 / e  
(Eo = 9 . 2 5 ~  IO" Vcm-' for GaAs). In our numerical calculations we included the following 
electric subbands n =1,2, 3 and 4. 

In figure 1 the chemical potential p* is shown (full curves) as a function of the well 
width for (a) different temperatures: T = 50, 77, 100, 140 and 220K at a fixed electron 
density n, = 2 x 10"cm-z, and (b) different electron densities: n,(x101~cm-2) = 0.1, 
0 .8 .25  and 8 at a fixed temperature T = 77K. The chemical potential decreases with (i) 
increasing width of the quantum well, (ii) increasing lattice temperam, and (ii) decreasing 
electron density. 

The elm-phonon resonance occurs at L - (In2 - n'21)''%rLo. which is the condition 
that the energy difference between two subbands n and n' equals a 1.0 phonon energy h-. 
The electro-phonon resonance effects are more pronounced when we plot the derivative of 
the mobility with respect to the width of the well. The ohmic mobilities along with their 
derivatives are shown in figure 2 as a function of the well width in the absence of e-e 
screening: (a) for different temperatures at a fixed electron density n, = 2 x 10" 
and (b) for different electron densities at a fixed temperature T = 77K. For illustrative 
purposes, and in order to be able to compare the results at different temperatures and electron 
densities, we scaled the mobility and its derivative to their values at L = XLO = 124A. 
Note that (i) the strongest resonance is observed for 82 - EI  = hmo. which is reached at 
L = &LO = 215 A; (ii) the resonance that involves higher subbands is much weaker, 
(iii) the resonances are more pronounced for the w e  when the lowest subband n = 1 is 
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WIDTH OF QUAMUM WELL L(1) 

WIDTH OF QUAMUM WELL L/nb 

F g r e  1. The chemical potential w* (full curves) and the energy levels (bmken curves) of lhe 
difierent el&c subbands as a function of the width of Ihe q o a "  well for (n) different 
temperatures a a fixed ekcmn density ne = 2 x 10" 6mn top to bot" the full c w e s  
m m p o n d  to the temperaaue T = 50.77,  100. 140 and WOK and (b) different elechnn 
densities ata fued tempaaaM T = 77K - t o p  to bot" Ihe NI curves CMeSpond to the 
demon density n.(x1011cm-2) = 8. 5. 2. 0.8 and 0.1. The doned curves m p d  to the 
enerxy levels of the elecaic subbands: from top to bonom n = 1.2 and 3. For CnAr the LO 
phonon enegy is iiyo = 36.6meV and the unit of length is Lo = f i X  = 39.5 A. 

involved; (iv) the amplitude of oscillations decreases quickly with increasing temperaNre, 
which is opposite to the temperature dependence found for magneto-phonon resonances; 
this is similar to what we found in [SI by using the relaxation time approach the physical 
reason of this effect will be discussed below; (v) the amplitude of the oscillation decreases 
slightly with increasing electron density; and (vi) the resonances shin to smaller well widths 
with increasing temperature and increasing electron density. 

To sNdy the influence of electron-electron screening on the electro-phonon resonances. 
the ohmic mobility along with its derivative are shown in figure 3 (full curves) together 
with the previous results without screening emken curves) as a function of the width of the 
quantum well ( U )  for two different temperaNres, and (b) for two different electron densities. 
Compared to the SiNation without e-e screening, we observe that the screening leads only 
to a small increase of the background for the mobility. This agrees with the results found 
by Lei 1261 in a GaAdAIGa.46 hetemjunction. The reason behind this is believed to be [26] 
that within RPA the enhancement of the LO phonon scattering rate due to dynamical effects 
almost compensates the reduction by static screening over the entire temperature and elecm 
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WIDTH OF QUANTUM WELL L@) 
200 300 400 

WIDTH OF QUANTUM MU L(k) 

200 300 400 

1 2 3 4 

WIDTH OF QUANTUM WELL L/nb WIDTH OF QUANTUM WELL L /nb 

Figure 2 The ohmic mobility and its derivative as a fimction of the width of the quantum 
well in the absence of ekctron-elechon saeening. (a) Different temperanoep at a fixed electron 
density ne = 2 x 10Lrcm-2. The mobilities M scaled to uleir valug al L = ~ L Q  which 
an PQ = p ( L / n L o  = I )  = 8605727 (for T = 5OK). 665279.7 (for T = 77K). 239385.8 
(for T = IWK), 95613.13 (for T = 14OK) and 4384211cm2Y-'s-' (for T = 22OK). (b) 
Different electron densities al a t e m p "  T = IIK. PO = ~ ( L J Z L Q  = 1) = 669626.8 (for 
n. = 10"'cm-z). 667962.7 (for & = 8 x 10'Qcm-2), 665279.7 (for ne = 2 x 10"cm-*). 
662460.8 (for ne = 5 x 10"cm-z) and 677648.6cm2V-ls-' (for ne = 8 x lO"~m-~). 

density region. Hence we conclude that the electron-electron screening does not effect the 
electro-phonon resonances very much for the case of QZDU; in a square well. Therefore 
from now on (in order to limit CPU time) we will neglect electron-electron screening. 

Non-linear effects can be studied in different ways: (i) we can heat up the electron 
system such that the electron temperature (Tc) is larger than the lattice temp-, or (U) 
the average electron velocity can be made non-zero by the application of a strong driving 
electric field. The effects of an electron temperature Tc z T on the mobility can be evaluated 
by assuming (see (12)) that (i) the LO phonon occupation number NO depends only on the 
lattice. temperature, and (ii) the electron distribution depends on the electron temperature. 
The ohmic mobility along with its derivative is plotted as a function of the well width in 
figure 4 at a lattice temperature T = 4.2K and at an electron density ne = 2 x 10'l cm-* 
for different electron temperatures. As far as the electro-phonon resonance is concerned it 
is clear that changing the electron temperature leads to almost the same effect as changing 
the lattice. temperature. This implies that the LO phonon emission scattering is the dominant 
pmcess responsible for the electro-phonon resonances. 
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WIDTH OF P W M  WELL L(A) 
200 300 400 

1 2 3 4 

WIDTH OF QUANTUM WELL L/nb 

WIDTH OF QUANTUM WELL L(&) 
200 300 400 

125 - 
WlDM OF QUANNM WELL L/nb 

Fw 3. lnauence of electmnelectrou sneening (full cwes) on the ohmic mobility and it+ 
derivative as a function of the Width of Ihe quantum well mmparrd to the mull in ule absence Of 
srreening (broken cwes) for (a) different temperalum at electron density n. = 2 x IO" anR: 
po = p ( L / x  Lo = 1) = 8M2033 (for T = SOK) and %080.03c"V%-1 (for T = 1KJK); 
and (b) different electron densities at lemperature T = 77 K @LO = @(L/nLo = I )  = 669769.9 
(for nc = 10'um-2) and 67O657.3cm2V-'s-' (for n. = 5 x 10" c d ) .  

The electro-phonon resonances me more pronounced at lower temperatures, which 
can be understood as follows: (i) with increasing temperature the M phonon absorption 
scattering rate is increased, which leads to an enhanced background scattering process 
and leads to a 'relative' smaller electro-phonon resonance; (ii) the electron's energy 
distribution is smoothed by thermal broadening at higher t emperam,  which contributes to 
the smoothing of the resonances; and (iii) for the electro-phonon resonance effect the density 
of state. (m) has only a step-like behaviour, which has to be compared with the singular 
nature of the DOS in the case of the magneto-phonon resonances. For the magneto-phonon 
resonances, t h m a l  broadening is more important and consequently leads to a decreasing 
magneto-phonon resonance amplitude with increasing temperature. 

So far the electro-phonon resonances have been studied within a linear response 
regime. Assuming that T, = T the e lm-phonon resonance effect for the mobility in 
the non-linear response regime (the hot-electron region) can be calculated within (10). 
In figure 5 the mobility and its derivative are plotted as a function of the width of 
the quantum well for different electron velocities at a temperature T = 77K and an 
electron density nc = 2 x 10" c d .  Note that (i) the electro-phonon resonances am more 
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WIDTH OF Q W M  WELL L(&) 
200 300 400 

,OO-.--- 
140 . . . . . - . 
220 -. . . - 

- 

1 2 3 4 

WIDTH OF QUANTUM WELL L/nb 

P i i  4. The ohmic mobility and i s  derivative as a 
function of Ihe width of the quantum well for diffei-enl 
electron tunperahma 7. ai a fixed lattice temperanue 
of T = 4.2 K and elecvon density nc = 2 x IO" anm2. 

F g r e  5. The mobility and is derivative in the non- 
linear nsponse regime as a function of the width of Ihe 
quantum well at tunperamre T = 77K aqd elecwn 
density me = 2 x IO" an-' for diffeMt electmn 
vekcities. For GaAs the umt of velocity is um = 

= p(L/nLo = 
1) = 665261.8 (for v / w  = O.oOl), 623751.0 
(for u / U  = 0.05). 5651543 (for u/m = 0.08), 
516968.5 (for v /um = 0.1) and 261 793.4~m~V-~s-' 
(for u/- = 0.2). 

= 4.4 x ~o'cms-~. 

pronounced at small velocity (i.e. small electric field); (ii) the amplitude of the oscillations 
decreases with increasing electron velocity, and the effect disappears at the electron velocity 
U = 0 . 2 ~  = 8.8 x 106cms-' for the casc of T = 77K and n. = 2 x IO" cm-l; and 
(iii) within the small-velocity regime, such that U < 0 . 1 ~ 0  increasing the electron velocity 
leads only to a small change in the e lm-phonon resonance effect. 

4. summary 

h the present paper we have sNdied the electro-phonon resonance effect by using 
a momentum balance equation approach with the inclusion of the electron-Lo-phonon 
interaction and elmn-electron screening. The aim of this study was (i) to understand 
the transport phenomena in a quasi-two-dimensional semiconductor system; (U) to give a 
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quantitative description of electron bansport in a QZDEC in the situation where the electron- 
Lo-phonon coupling is the dominant scattering process limiting mobility and where several 
electric subbands are occupied by the electrons; (iii) to extend our previous study in order to 
include electron4ectron screening; (iv) to study the e lm-phonon resonance effect in the 
ohmic and hot-electmn regime; and (v) to study the dependence on the lattice temperature, 
the electron temperature, the electron density and the electron average velocity of the electro- 
phonon resonance effect. 

Our conclusions of this study can be summarized as follows. (i) For a quasi-two- 
dimensional electron system in a polar semiconductor such as GaAs and at relatively high 
temperatures the elecho-phonon resonance effect occum when the energy difference between 
two electric subbands equals a U) phonon energy (hm). (U) The electro-phonon resonance 
effect is more pronounced at lower temperatures. With increasing temperature, the amplitude 
of the oscillations decreases and the position of the resonances shifts to smaller well widths 
in the case of a squarewell confinement potential. (iii) With incming electron density, 
the amplitude of the elecho-phonon resonances slightly decreases and the position of the 
resonances shifts to smaller well widths. (iv) The strongest oscillation for the electron- 
phonon resonances is observed for E* - &, = 8%. The resonances that involve higher 
subbands are much weaker. (v) Elecmn-electron screening does not greatly influence 
the resonance effect Electron-electron screening increases slightly the background of the 
mobility. (vi) Increasing the electron temperature leads to almost the same effect as changing 
the laltice temperature for the elecho-phonon resonances. R e  dominant scattering process 
that induces the resonances is Lo phonon emission. (vu) The electro-phonon resonances 
are more pronounced at low average electron velocity, i s  the weak electric field limit. The 
amplitude of the oscillations decreases with increasing electron velocity. (viii) We predict 
that the electro-phonon resonance is favourably observed in experiments done at relatively 
low temperatures, on a low electron density sample, and with a small electric field (the 
linear response regime). 

In the present paper, numerical results were. given only for the theoretical model of 
infinite-well confinement. Real systems have finite well depths or have a triangular-well-type 
of confinemenf like the experimental systems of [5,7]. The present calculation can easily 
be generalized to such confinement potentials. The drawback of these more complicated 
confinement potentials is that only a very small number (is. one or two) electric subbands 
can be included in order to keep computer time at a realistic level. We believe that 
our conclusions concerning electron screening and the dependence of the electro-phonon 
monances on the lattice and electron temperature, the e l m n  density and the average 
electron velocity are valid irrespective of the exact form of the confinement potential. 

It is now well established [B] that in real QZO systems the bulk M phonons are altered 
into interface and slab phonon modes. It is possible to generalize the present calculation in 
order to include these. new type of phonons. Because the energy of the interface phonons 
are only slightly different from those of the bulk phonons the electro-phonon resonance 
condition will be practically the same. We do not expect very different results from such a 
generalization when compared to the present results. From I291 it may be. inferred that the 
amplitude of the resonances can be slightly larger, because of the enhanced electrokphooon 
scattering due. to scattering with the interface phonons. 
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Appendix 

In this Appendix we calculate the imaginary part of the electron density-density correlation 
with inclusion of the electrowelectron screening as calculated within the random phase 
approximation (RPA) and where many electric subbands are present 1271. For convenience 
of presenting and' deriving the formulae, we introduce the following notations. First, the 
correlation function in the absence of e-e screening: 

n j = n y + i n j .  (AI) 

Second, the dielectric function in RPA: 

(U) €.. ,, - - eij R + ie;. 
Third, the correlation function in the presence of e-e screening: 

ci = C: + i C: =E;'",. (A3 

By solving the equations induced by the real and imaginary parts of (M), we have for the 
imaginary part of the correlation function 

ci' = 1 4  + €;j(€;)-'€;jl-'l[n; - €;j(€;)-'n;l. (A4) 

After simplification we obtain for the imaginary part of the electron density4ensity 
correlation function 

(-4.5) I -  R I -I  R -1 -I I -I I R - I  R ci - kij(€ij) + E ; ( E ~ ~ )  1 [ (e i j )  nj - (eij) nj 1. 

Retuning to our previous notations (see section 2) we have 

with 

and 
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